
  
 

   
 

 

 

 

 

 

 

Module 1 

Introduction to everything 

Section 

Python programming: object-oriented programming  



  
 

   
 

Object oriented programming  

Main ideas in Object-Oriented Programming (OOPs) are -  

• Class 

• Objects 

• Encapsulation 

• Inheritance 

• Polymorphism 

 

  



  
 

   
 

Classes and objects 

• Python, being an object-oriented programming language, considers everything as an object. 

• An object has its properties and methods. 

• A Class is like a blueprint. Classes represent real-world things and situations and these classes 

are used to construct objects. 

• When we write a class, we specify the general behavior of the class, that will be exhibited by all 

the objects created from the class. 

• Instantiation is the process by which an object is created from a class and it is with these 

instances of classes that we work with. 

 

 

 

 

Classes are created by keyword class.

Attributes are the variables that 
belong to a class.

Attributes are always public and can 
be accessed using the dot (.) operator.



  
 

   
 

 

Example Code: 

class Employee: 

  

    '''Common base class for all employees''' 

    empCount = 0  

  

    def __init__(self, name, salary):  

        self.name = name  

        self.salary = salary  

        Employee.empCount += 1  

  

    def displayCount(self):  

        print("Total Employee %d" % Employee.empCount) 

  

    def displayEmployee(self): 

        print ("Name: ",self.name,", Salary: ", self.salary) 

 

e1=Employee("Devi",100000) 

e2=Employee("Nur",50000) 

e3=Employee("Riya",80000) 

e3.displayEmployee() 

e3.displayCount() 

Output: 

Name:  Riya, Salary:  80000 

Total Employee:  6 

The method __init__() is a special method, which is called class constructor or initialization method that 

Python calls when you create a new instance of this class. 

  



  
 

   
 

Encapsulation 

Encapsulation refers to the idea of wrapping data and the methods that operate on data into one single unit. 

Encapsulation helps in isolating implementation details from clients that could expose hidden implementation 

details or violate state invariance maintained by the methods. A class is an example of encapsulation as it 

encapsulates all the data that is member functions, variables, etc. 

 

 

 

 

  



  
 

   
 

Inheritance  

Inheritance in object-oriented programming is a concept where one class can derive or inherit properties from 

another class. The class that derives properties is called the derived class and the class from which the 

properties are being derived is called the base class or parent class. The benefits of inheritance are- 

• It provides the reusability of a code. We don’t have to write the same code again and again. 

Also, it allows us to add more features to a class without modifying it. 

• It is transitive in nature, which means that if class B inherits from another class A, then all 

the subclasses of B would automatically inherit from class A. 

 

Example Code: 

class Animal:   

    def speak(self):   

        print("Animal Speaking")   

         

#child class Dog inherits the base class Animal   

class Dog(Animal):   

    def bark(self):   

        print("dog barking")   

         

d = Dog()   

d.bark()   

d.speak() 

 

Output: 

dog barking 

Animal Speaking 

 

 

 

  



  
 

   
 

Packages and modules in python 

 

In Python, modules are simple files saved with .py extension. It contains collections of functions and global 

variables. It is an executable file. A module allows you to logically organize your Python code. Grouping related 

code into a module makes the code easier to understand and use. You can use any Python source file as a 

module by executing an import statement in some other Python source file. Python common modules are 

Numpy, Scipy, Matplotlib etc. A package is a simple directory having collections of modules. For example, 

Pandas is a python package. 

 

 

 

 

  



  
 

   
 

Advantages of modules in python 

 

Example Code: 

 

# This piece of code is written in demo.py file 

 

def callme(): 

    print("Module Demo Called") 

import demo 

demo.callme() 

 

Output: 

Module Demo Called 

 

 

 

 

 

 

 

 



  
 

   
 

Summary 

• Object oriented programming enables modular and structural approach of programming which 

in turn improves code simplicity, eases out code maintenance 

• Python modules are .py files containing class implementations, attributes, and functions, can be 

loaded using import keyword 

• Python has many useful built-in modules such as math, os, time, statistics etc. 

 


