

Module 1

Introduction to everything

Section

Python Programming: python data types & operators

Getting started with python

• Python is a highly efficient, interpreted, high-level, general purpose programming language.

• Python was created by Guido van Rossum and was first released in 1991 and is developed and

maintained by the Python Software Foundation.

• The syntax of Python is simple and elegant and helps one write clean code. Python is so efficient that

even a few lines of code will help achieving many tasks, compared to many other languages.

• Python code is easy to read, write debug, extend and build upon, compared to most other

programming languages.

Components of python

The following picture illustrates the various components of Python and how they are organized-

Python data types and operators

Python has a couple base data types / primitive data types:

• int: to represent integer numbers (0, 1, 2, 3, ...)

• float: to represent real numbers (0.1234, 1.2354, ...)

• str: to represent text ("Hello from Orbit!")

• bool: to represent things that can either be True or False (Booleans)

• Complex: to represent imaginary numbers (5+6j, -45j, 12-5j, ...)

Each data type has different behavior with different operators and functions. To understand what your code

will do and to understand the error messages, it often boils down to understanding which data types are at

work.

In Python, numeric datatype consists of –

• int (integer) - a whole number, positive or negative, without decimals, of unlimited length. Example: x

= 5

• float (floating point number) - a number, positive or negative, containing one or more decimals.

Example: y = 5.1

• complex - written with j as the imaginary part. Example: z = 5j

The type () function is used to identify the type of the object.

Addition, subtraction, multiplication and division are the operations carried out on numbers.

Collections in python

LISTS

 A list is a collection of items that is ordered and changeable. The key details of lists are as follows:

• A list contains items separated by commas and enclosed within square brackets ([]).

• To some extent, lists are similar to arrays in C. One of the differences between them is that all the items belonging to a list can be of different data type.

list = ['abcd', 786 , 2.23, 'john', 70.2]
tinylist = [123, 'john']

print(list) # Prints complete list
print(list[0]) # Prints first element of the list
print(list[1:3]) # Prints elements starting from 2nd till 3rd
print(list[2:]) # Prints elements starting from 3rd element
print(tinylist * 2) # Prints list two times
print(list + tinylist) # Prints concatenated lists

Output:

['abcd', 786, 2.23, 'john', 70.2]
abcd
[786, 2.23]
[2.23, 'john', 70.2]
[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.2, 123, 'john']

TUPLES

A tuple is a collection of items that are ordered and unchangeable. The key details of tuples are as

follows:

• Unchangeable values are referred to as ‘immutable’ in Python. A tuple is thus an immutable list.

• A tuple is similar to a list, but it is identified using a parenthesis, instead of a square bracket.

 tuple = ('abcd', 786 , 2.23, 'john', 70.2)
tinytuple = (123, 'john')

print(tuple) # Prints complete tuple
print(tuple[0]) # Prints first element of the tuple
print(tuple[1:3]) # Prints elements starting from 2nd till 3rd
print(tuple[2:]) # Prints elements starting from 3rd element
print(tinytuple * 2) # Prints tuple two times
print(tuple + tinytuple) # Prints concatenated tuple

Output:

('abcd', 786, 2.23, 'john', 70.2)

abcd

(786, 2.23)

(2.23, 'john', 70.2)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.2, 123, 'john')

DICTIONARY

A dictionary is a collection of key-value pairs, which are unordered, changeable and indexed. The key details of

dictionaries are as follows:

• Python dictionaries are indicated by curly braces around the key-value pairs.

• Each key is connected to a value, and you can use a key to access the value associated with that key.

• A key’s value can be a number, a string, a list, or even another dictionary.

dict = {}
dict['one'] = "This is one"
dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print(dict['one']) # Prints value for 'one' key
print(dict[2]) # Prints value for 2 key
print(tinydict) # Prints complete dictionary
print(tinydict.keys()) # Prints all the keys
print(tinydict.values()) # Prints all the values

Output:

 This is one
This is two
{'name': 'john', 'code': 6734, 'dept': 'sales'}

dict_keys(['name', 'code', 'dept'])
dict_values(['john', 6734, 'sales'])

SETS

In Python, a set is a collection of items that are unordered and unindexed, but are mutable. The key details of sets are as follows:

• A set is indicated by means of curly braces. Being unordered, printing a set will output the items in a random order.

• Since sets are unordered, accessing items by means of indexing, is not possible, but like lists and tuples, looping through a set can be done.

setA = {4, 5, 6, 3, 9}
setB = {1, 6, 2, 7, 5}

print(setA.union(setB))# Prints union of both the sets
print(setA.intersection(setB))# Prints intersection of both sets

Output:

{1, 2, 3, 4, 5, 6, 7, 9}
{5, 6}

OPERATORS IN PYTHON

1. ARITHMETIC OPERATORS

a,b,c=10,5,

(f"(Addition) {a}+{b} =",a+b)

(f"(Subtraction) {a}-{b} =",a)

(f"(Multiplication) {a}*{b} =",a)

(f"(Division) {a}/{b} =",a)

(f"(Exponentiation) {a}**{b} =",a)

(f"(Floor Division) {a}//{c} =",a)

 Output:

(Addition) 10+5 = 15
(Subtraction) 10-5 = 5
(Multiplication) 10*5 = 50
(Division) 10/5 = 2.0
(Exponentiation) 10**5 = 100000
(Floor Division) 10//6 = 1

2. LOGICAL OPERATORS

x,y=4,3
print(x<5 and x<10)
print(x<5 or x<4)
print(not(x<5 and x<10))

Output:

 True
True
False

3. IDENTITY OPERATORS

indah=["car","bicycle"]
nur=["bicycle","airplane"]

print("Does Indah own the same vehicles as Nur?",x is y,"\n")
print("Is it true that Indah doesn't own the same vehicles as Nur?",x is not y)

Output:

Does Indah own the same vehicles as Nur? False

Is it true that Indah doesn't own the same vehicles as Nur? True

4. MEMBERSHIP OPERATORS

x=["Apples","Oranges",["Bananas","Mangoes"]]
y=["Bananas","Mangoes"]
print(y in x)
print(y not in x)

Output:

 True
False

5. BITWISE OPERATORS

a,b=10,4
print("Bitwise AND operation",a & b)
print("Bitwise OR operation",a | b)
print("Bitwise XOR operation",a^b)
print("Complement",~a)
print("Bitwise Right Shift",a >> 1)
print("Bitwise Left Shift",a << 1)

Output:

Bitwise AND operation 0
Bitwise OR operation 14
Bitwise XOR operation 14
Complement -11
Bitwise Right Shift 5
Bitwise Left Shift 20

6. ASSIGNMENT OPERATORS

x,y,z=2,5,10
print("Initial Value of x,y,z:",x,y,z)
x+=3
y-=3
z**=3
print("Final Value of x,y,z:", x,y,z)

Output:

Initial Value of x,y,z: 2 5 10
Final Value of x,y,z: 5 2 1000

Summary

• Python is a popular, easy to use, easy to update and maintain programming language.

• It is open-source, powerful, portable and has exhaustive set of libraries.

• Python is used today for variety of tasks, few popular applications include data analytics, machine

learning, web scrapping, web application development, backend services development.

• Python 2.x is legacy, python 3.x is present and future of python

• Anaconda is a popular distribution of python with code editors such as Jupyter notebook and spyder

IDE.

• Data structures are ways to store data in a programming language

• Python has five primitive data types which are immutable – integer, float, string, Boolean and complex

• Python has 4 non primitive data types – list, tuple, dictionary and set

• Tuple is immutable whereas list, dictionary and set are mutable.

• We can type cast primitive data types from one to another.

