

Module 3

Data Analytics with Python - Applied analytics

Section: Data Visualization in Python using Matplotlib & Seaborn

Data Visualization

Data Visualization is used to communicate information clearly and efficiently to users by the usage of

information graphics such as tables and charts. It helps users in analyzing a large amount of data in a simpler

way. It makes complex data more accessible, understandable, and usable.

Python Libraries for data visualization

Matplotlib

Matplotlib is a data visualization library and 2-D plotting library of Python It was initially released in 2003

and it is the most popular and widely-used plotting library in the Python community.

It comes with an interactive environment across multiple platforms. Matplotlib can be used in Python

scripts, the Python and IPython shells, the Jupyter notebook, web application servers, etc.

Seaborn

Seaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key

difference is Seaborn's default styles and color palettes, which are designed to be more aesthetically pleasing

and modern. Since Seaborn is built on top of matplotlib, you'll need to know matplotlib to tweak Seaborn's

defaults.

Line Plots

Matplotlib plots your data on Figures (e.g., windows, Jupyter widgets, etc.), each of which can contain

one or more Axes, an area where points can be specified in terms of x-y coordinates (or theta-r in a polar plot, x-

y-z in a 3D plot, etc). The simplest way of creating a Figure with an Axes is using pyplot.subplots.

We can then use Axes.plot to draw some data on the Axes:

fig, ax = plt.subplots() # Create a figure containing a single axes.

ax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # Plot some data on the axes.

https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot

Parts of a Figure

Here are the components of a Matplotlib Figure.

Figure

The whole figure. The Figure keeps track of all the child Axes, a group of 'special' Artists (titles, figure legends,

colorbars, etc), and even nested subfigures.

https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes

Axes

An Axes is an Artist attached to a Figure that contains a region for plotting data, and usually includes two (or

three in the case of 3D) Axis objects (be aware of the difference between Axes and Axis) that provide ticks and

tick labels to provide scales for the data in the Axes. Each Axes also has a title (set via set title()), an x-label (set

via set_xlabel()), and a y-label set via set_ylabel()).

The Axes class and its member functions are the primary entry point to working with the OOP interface, and

have most of the plotting methods defined on them (e.g. ax.plot(), shown above, uses the plot method)

Axis

These objects set the scale and limits and generate ticks (the marks on the Axis) and ticklabels (strings labelling

the ticks). The location of the ticks is determined by a Locator object and the ticklabel strings are formatted by

a Formatter. The combination of the correct Locator and Formatter gives very fine control over the tick locations

and labels.

Artist

Basically, everything visible on the Figure is an Artist (even Figure, Axes, and Axis objects). This

includes Text objects, Line2D objects, collections objects, Patch objects, etc. When the Figure is rendered, all of

the Artists are drawn to the canvas. Most Artists are tied to an Axes; such an Artist cannot be shared by multiple

Axes, or moved from one to another.

https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axis_api.html#matplotlib.axis.Axis
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_title.html#matplotlib.axes.Axes.set_title
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot
https://matplotlib.org/stable/api/axis_api.html#matplotlib.axis.Axis
https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Locator
https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Formatter
https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Locator
https://matplotlib.org/stable/api/ticker_api.html#matplotlib.ticker.Formatter
https://matplotlib.org/stable/api/artist_api.html#matplotlib.artist.Artist
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/stable/api/axis_api.html#matplotlib.axis.Axis
https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text
https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D
https://matplotlib.org/stable/api/collections_api.html#module-matplotlib.collections
https://matplotlib.org/stable/api/_as_gen/matplotlib.patches.Patch.html#matplotlib.patches.Patch

Controlling Line Patterns and Colors

Matplotlib has an additional parameter to control the colour and style of the plot.

 plt.plot(xa, ya 'g')

This will make the line green. You can use any colour of red, green, blue, cyan, magenta, yellow, white or

black just by using the first character of the colour name in lower case (use "k" for black, as "b" means blue).

You can also alter the linestyle, for example two dashes -- makes a dashed line. This can be used added to the

colour selector, like this:

 plt.plot(xa, ya 'r--')

You can use "-" for a solid line (the default), "-." for dash-dot lines, or ":" for a dotted line.

Colour parameter takes a string. The options are

• Single character colors, as above, e.g. "r", "g" etc.

• CSS colour names. There are 140 shades, with names such as seagreen, steelblue, tomato, and so on.

They are listed here, but for Matplotlib the names should be written in lower case.

• RGB colours. These take the form "#rrggbb" which indicates the color as a six-digit hex value

indicating the amount of red, green and blue each as a 2 digit hex value (00 to FF), again in the same

way that HTML colours are specified in hex.

Marker is a symbol such as a symbol such as a small dot, square, diamond etc that indicates a data point on the

graph. As with lines, markers can be controlled by a simple text string, or by a set of parameters that give more

options.

https://www.w3schools.com/cssref/css_colors.asp

Controlling markers with a string

In this example, we have added markers to our two curves:

The green curve has circle markers, the red curve has square markers.

The markers appear at the data points we have defined for the plot. Since we have used no line space to define

20 equally spaced points between x=0 and x=5, we see 20 markers at these positions.

Here is the code:

1. from matplotlib import pyplot as plt
2. import numpy as np
3.
4. xa = np.linspace(0, 5, 20)
5. ya = xa**2
6. plt.plot(xa, ya, 'g-o')
7. ya = 3*xa
8. plt.plot(xa, ya, 'r-s')
9. plt.show()

All we have changed from the original red and green curve at the start of the article are the style strings. "g-o"

specifies a green curve, a solid line and a circle marker (the letter o). "r-s" specifies a red curve, a solid line, and a

square marker (the letter s).

Notice that you must specify a line style, otherwise no line will be drawn (just the markers). You can used other

line styles, for example "g-. o" for dash-dot lines.

Matplotlib supports quite a few marker shapes, here are some of the common ones:

▪ o - circle

▪ s - square

▪ v, <, >, ^ - triangles pointing down, left, right, up

▪ d, D - thin or thick diamond

▪ x, X - cross (x is line only, X is filled shape)

▪ h – hexagon

Axis, labels & legends

set_xlabel, set_ylabel, and set_title are used to add text in the indicated locations (see Text in Matplotlib

Plots for more discussion). Text can also be directly added to plots using text

mu, sigma = 115, 15

x = mu + sigma * np.random.randn(10000)

fig, ax = plt.subplots(figsize=(5, 2.7),

layout='constrained')

the histogram of the data

n, bins, patches = ax.hist(x, 50, density=1, facecolor='C0',

alpha=0.75)

ax.set_xlabel('Length [cm]')

ax.set_ylabel('Probability')

ax.set_title('Aardvark lengths\n (not really)')

ax.text(75, .025, r'$\mu=115,\ \sigma=15$')

ax.axis([55, 175, 0, 0.03])

ax.grid(True);

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_title.html#matplotlib.axes.Axes.set_title
https://matplotlib.org/stable/tutorials/text/text_intro.html
https://matplotlib.org/stable/tutorials/text/text_intro.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.text.html#matplotlib.axes.Axes.text

Following are some more attributes of function legend ():

• shadow: [None or bool] Whether to draw a shadow behind the legend. It’s Default value is None.

• font size: The font size of the legend. If the value is numeric the size will be the absolute font size

in points.

• face color: [None or “inherit” or color] The legend’s background color.

• edge color: [None or “inherit” or color] The legend’s background patch edge color.

Plot multiple plots in Matplotlib

We can draw multiple graphs in a single plot in two ways. One is by using subplot () function and other by

superimposition of second graph on the first i.e, all graphs will appear on the same plot.

pyplot.subplots creates a figure and a grid of subplots with a single call, while providing reasonable

control over how the individual plots are created.

Syntax: matplotlib.pyplot.subplots(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True,

subplot_kw=None, gridspec_kw=None, **fig_kw)

Parameters

1. nrows, ncols: These gives the number of rows and columns respectively. Also, it must be noted that

both these parameters are optional and the default value is 1.

2. sharex, sharey: These parameters specify about the properties that are shared among a and y

axis.Possible values for them can be, row, col, none or default value which is False.

3. squeeze: This parameter is a boolean value specified, which asks the programmer whether to squeeze

out, meaning remove the extra dimension from the array. It has a default value False.

4. subplot_kw: This parameters allow us to add keywords to each subplot and its default value is None.

5. gridspec_kw: This allows us to add grids on each subplot and has a default value of None.

6. **fig_kw: This allows us to pass any other additional keyword argument to the function call and has a

default value of None.

import matplotlib.pyplot as plt

import numpy as np

import math

Get the angles from 0 to 2 pie (360 degree) in narray object

X = np.arange(0, math.pi*2, 0.05)

Using built-in trigonometric function we can directly plot

the given cosine wave for the given angles

Y1 = np.sin(X)

Y2 = np.cos(X)

Y3 = np.tan(X)

Y4 = np.tanh(X)

Initialise the subplot function using number of rows and columns

figure, axis = plt.subplots(2, 2)

For Sine Function

axis[0, 0].plot(X, Y1)

axis[0, 0].set_title("Sine Function")

For Cosine Function

axis[0, 1].plot(X, Y2)

axis[0, 1].set_title("Cosine Function")

For Tangent Function

axis[1, 0].plot(X, Y3)

axis[1, 0].set_title("Tangent Function")

For Tanh Function

axis[1, 1].plot(X, Y4)

axis[1, 1].set_title("Tanh Function")

Combine all the operations and display

plt.show()

Output-

we will now have a look at plotting multiple curves by superimposing them. In this method we do not use any

special

function instead we directly plot the curves one above other and try to set the scale.

import matplotlib.pyplot as plt

import numpy as np

import math

create an array X

X = np.arange(0, math.pi*2, 0.05)

Assign variables to the y axis part of the curve

y = np.sin(X)

z = np.cos(X)

Plotting both the curves

plt.plot(X, y, color='r', label='sin')

plt.plot(X, z, color='g', label='cos')

Naming the axis and the whole graph

plt.xlabel("Angle")

plt.ylabel("Magnitude")

plt.title("Sine and Cosine functions")

Adding legend

plt.legend()

To load the display window

plt.show()

Output-

Types of Plots and Seaborn
Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for

drawing attractive and informative statistical graphics.

Types of Plots in Seaborn Covered here are-

• Scatter Plot

• Line Plot

• Bar Plot

• Box Plots

• Distribution Plots

• Heatmaps

• Swarm plot

• Count plot

• Density plot

Boxplot

A box plot (or box-and-whisker plot) shows the distribution of quantitative data in a way that facilitates

comparisons between variables or across levels of a categorical variable. The box shows the quartiles of the

dataset while the whiskers extend to show the rest of the distribution, except for points that are determined

to be “outliers” using a method that is a function of the inter-quartile range.

Input data can be passed in a variety of formats, including:

• Vectors of data represented as lists, NumPy arrays, or pandas Series objects passed directly to the x, y,

and/or hue parameters.

• A “long-form” DataFrame, in which case the x, y, and hue variables will determine how the data are

plotted.

• A “wide-form” DataFrame, such that each numeric column will be plotted.

• An array or list of vectors.

Distribution Plots

We will discuss on 3 types of distribution plots namely:

1. Histplot

It is used basically for univariant set of observations and visualizes it through a histogram i.e. only one

observation and hence we choose one particular column of the dataset.

2. Joint plot

It is used to draw a plot of two variables with bivariate and univariate graphs. It basically combines two

different plots.

3. Pair plot

To plot multiple pairwise bivariate distributions in a dataset, you can use the pairplot() function.

Heatmaps

A heat map (or heatmap) is a data visualization technique that shows magnitude of a phenomenon as

color in two dimensions. The variation in color may be by hue or intensity, giving obvious visual cues to the

reader about how the phenomenon is clustered or varies over space.

Swarmplots And Countplots

Swarmplots are used to draw a categorical scatterplot with non-overlapping points. A swarm plot can be

drawn on its own, but it is also a good complement to a box or violin plot in cases where you want to show all

observations along with some representation of the underlying distribution.

Count plots are used to show the counts of observations in each categorical bin using bars.

Swarmplot

Countplot

Density Plot, Joint Distribution Plot

 Density plots are used to observe the distribution of a variable in a dataset. An advantage of

Density Plots over Histograms is that they're better at determining the distribution shape because they're

not affected by the number of bins.

A joint density plot is useful to represent the relationship of 2 numerical variables when you have

a lot of data points. Without overlapping of the points, the plotting window is split into several hexbins.

The color of each hexbin denotes the number of points in it.

Summary
• Data Visualization is used to communicate information clearly and efficiently to users by the usage

of information graphics such as tables and charts.

• Matplotlib and Seaborn are libraries for data visualization in python.

• The key difference is Seaborn's default styles and color palettes, which are designed to be more

aesthetically pleasing and modern.

• Marker is a symbol such as a symbol such as a small dot, square, diamond etc. that indicates a

data point on the graph.

• We can draw multiple graphs in a single plot in two ways. One is by using subplot () function and

other by superimposition of second graph on the first

• A box plot (or box-and-whisker plot) shows the distribution of quantitative data in a way that

facilitates comparisons between variables or across levels of a categorical variable.

• Histplot is used basically for univariant set of observations and visualizes it through a histogram.

• A heat map (or heatmap) is a data visualization technique that shows magnitude of a phenomenon as

colour in two dimensions.

• Density plots are used to observe the distribution of a variable in a dataset.

