

Module 3

Data Analytics with Python - Applied analytics

Section: Analyzing data with python

Pandas

Pandas is an open-source library providing high-performance, easy-to-use data structures and data analysis tools for

the Python programming language.

Pandas is built on top of the NumPy package; hence it takes a lot of basic inspiration from it.

The Data Structures provided by Pandas are of two distinct types

1. Pandas Series

2. Pandas DataFrame

Series
A Series is a one-dimensional object that can hold any data type such as integers, floats and strings. Let’s take a
list of items as an input argument and create a Series object for that list.

Output-

Series also generates by default row index numbers which is a sequence of incremental numbers starting
from ‘0’

import pandas as pd #importing pandas library

series = pd.Series([5,4,8,9,25,6]) # creating series - its one dimensional data

series

0 5

1 4

2 8

3 9

4 25

5 6

dtype: int64

Dataframe

A DataFrame is a two-dimensional object that can have columns with potential different types. Different kind of

inputs include dictionaries, lists, series, and even another DataFrame.

It is the most commonly used pandas object

Let’s create dataframe

Example-1

Output-

dataframe_dict = {

'name' : ["TOM", "DOM", "JACK", "TIM", "JESSI"],

'age' : [32,45, 30, 40, 25],

'designation': ["CEO", "VP", "SVP", "AM", "DEV"]

}

df = pd.DataFrame(dataframe_dict,

index = ["First -> ","Second -> ", "Third -> ", "Fourth -> ", "Fifth -> "])

Properties of A DataFrame:

• The axes attribute of DataFrame contains both the row axis index and the column axis index.

• The shape attribute has the shape of the 2-dimensional matrix/DataFrame as a tuple. e.g., A shape of

(2,1) means a DataFrame instance with 2 rows and 1 column, a shape (5,3) means a DataFrame instance

with 5 rows and 3 columns. As shown in above example-1.

• A DataFrame has several columns and rows to form its structure.

• Each column can hold different types of elements. One column of a DataFrame can hold all integers while

another column has all its elements as string.

• A column itself can hold objects of several types. It is possible for a DataFrame column to have some of its

members as integers and some as floats and the remaining elements as an instance of a class like

complex.

• A column with heterogeneous data elements will have its type as Object.

• The Python above example-1 has a DataFrame with first column as object , second column as all integers

and the last column with objects again.

• The DataFrame attribute dtypes returns type of each column contained in a DataFrame series.

NumPy

NumPy (Numerical Python) is an open-source Python library that’s used in almost every field of science and
engineering. It’s the universal standard for working with numerical data in Python, and it’s at the core of the
scientific Python ecosystems. NumPy users include everyone from beginning coders to experienced researchers
doing state-of-the-art scientific and industrial research and development. The NumPy API is used extensively in
Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other data science and scientific Python packages.

• It is a powerful N-dimensional array object.

• Sophisticated (broadcasting/universal) functions.

• Useful linear algebra, Fourier transform, and random number capabilities.

• NumPy can also be used as an efficient multi-dimensional container of generic data.

Example-2

NumPy datatypes

NumPy supports a wider variety of data types than are built-in to the Python language by default. They
are defined by the NumPy. dtype class and include:

• intc (same as a C integer) and intp (used for indexing)
• int8, int16, int32, int64
• uint8, uint16, uint32, uint64
• float16, float32, float64
• complex64, complex128
• bool_, int_, float_, complex_ are shorthand for defaults.

These can be used as functions to cast literals or sequence types, as well as arguments.
to numpy functions that accept the dtype keyword argument.

import numpy as np

civilian_birth = np.array([4352, 233, 3245, 256, 2394])

civilian_birth

#output

array([4352, 233, 3245, 256, 2394])

Importing excel sheets, csv files, executing sql queries

The pandas I/O API is a set of top-level reader functions to read and write different type of files we use this read

function of pandas and store it in new dataframe. After importing desired file, we can run desired operation on

that dataframe.

Format Type Data Description Reader Writer

text CSV read_csv to_csv

text Fixed-Width Text File read_fwf

text JSON read_json to_json

text HTML read_html to_html

text LaTeX

Styler.to_latex

text XML read_xml to_xml

text Local clipboard read_clipboard to_clipboard

binary MS Excel read_excel to_excel

binary OpenDocument read_excel

binary HDF5 Format read_hdf to_hdf

binary Feather Format read_feather to_feather

binary Parquet Format read_parquet to_parquet

binary ORC Format read_orc

binary Stata read_stata to_stata

binary SAS read_sas

binary SPSS read_spss

binary Python Pickle Format read_pickle to_pickle

SQL SQL read_sql to_sql

SQL Google BigQuery read_gbq to_gbq

Examples of Importing different file formats using pandas

Import CSV File into Pandas.

Function syntex

pd. read_csv (r‘Path where file is stored\Filename.csv’)

Place "r" before the path string to address special character, such as '\'.

Example-3

Output

import pandas as pd

path = 'Pokemon.csv' # define complete path of file location

Load the csv file into a data frame

df = pd.read_csv(path)

df

Exporting CSV File into Pandas.

To export dataframe to desired format we can use below ‘.to_’ function of pandas.

Example-4

Now data frame is saved as csv

Similarly, we can use we can use below Import/Export functions for different type of files.

Format Type Data Description Reader Writer

text CSV read_csv to_csv

text Fixed-Width Text File read_fwf

text JSON read_json to_json

text HTML read_html to_html

text LaTeX

Styler.to_latex

text XML read_xml to_xml

text Local clipboard read_clipboard to_clipboard

binary MS Excel read_excel to_excel

binary OpenDocument read_excel

binary HDF5 Format read_hdf to_hdf

binary Feather Format read_feather to_feather

binary Parquet Format read_parquet to_parquet

df.to_csv('Pokemon.csv')

https://en.wikipedia.org/wiki/Comma-separated_values
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-csv-table
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-store-in-csv
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-fwf-reader
https://www.json.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-json-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-json-writer
https://en.wikipedia.org/wiki/HTML
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-html
https://en.wikipedia.org/wiki/LaTeX
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-latex
https://www.w3.org/standards/xml/core
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-xml
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-xml
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-clipboard
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-clipboard
https://en.wikipedia.org/wiki/Microsoft_Excel
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-excel-writer
http://www.opendocumentformat.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-ods
https://support.hdfgroup.org/HDF5/whatishdf5.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-hdf5
https://github.com/wesm/feather
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-feather
https://parquet.apache.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-parquet

binary ORC Format read_orc

binary Stata read_stata to_stata

binary SAS read_sas

binary SPSS read_spss

binary Python Pickle Format read_pickle to_pickle

SQL SQL read_sql to_sql

SQL Google BigQuery read_gbq to_gbq

Executing SQL queries

Example-5

Output

import sqlite3

create a database or connect to existing database

conn = sqlite3.connect("mydb.db")

create a table

query = "create table if not exists customers (cid int primary key not null, Name text

not null, Age int not null, City text not null);"

conn.execute(query)

inserting data into the table

query = "insert into customers(cid,Name,Age,City) values(?,?,?,?)"

conn.execute(query,(101,"Anshu",45,"Delhi"))

conn.execute(query,(102,"Max",37,"Chennai"))

conn.execute(query,(103,"Jenny",25,"Mumbai"))

select query = to fetch data

query = "select * from customers"

data= conn.execute(query)

for row in data:

 print(row)

https://orc.apache.org/
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-orc
https://en.wikipedia.org/wiki/Stata
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-stata-reader
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-stata-writer
https://en.wikipedia.org/wiki/SAS_(software)
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sas-reader
https://en.wikipedia.org/wiki/SPSS
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-spss-reader
https://docs.python.org/3/library/pickle.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-pickle
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-pickle
https://en.wikipedia.org/wiki/SQL
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-sql
https://en.wikipedia.org/wiki/BigQuery
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-bigquery
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-bigquery

Selection of columns and Filtering Dataframes

We can select a column from a dataframe by using the column name we want to select

Example-6

Output

(101, 'Anshu', 45, 'Delhi')

(102, 'Max', 37, 'Chennai')

(103, 'Jenny', 25, 'Mumbai')

df[['Name','Type 1','Attack']] #select only Name,Type 1,Attack columns

Filtering of data

Data filtering is another powerful feature of Pandas

You can create very powerful and sophisticated expressions by combining logical operations with the following
operators:

• NOT (~)
• AND (&)
• OR (|)
• XOR (^)

Example-7

Output

As you can see, we have 70 rows filtered by Type 1 = Grass which suggest we have 70 pokemon having Type 1 as

grass in whole data set.

new_df = df[df['Type 1'] == 'Grass'] # Filter rows containing Type 1 =

Grass type (filtering grass type pokemon)

new_df

Descriptive Analysis with pandas

Python Pandas is used to compute descriptive statistical data like count, unique values, mean, standard

deviation, minimum and maximum value and many more. In this section let’s learn to get the descriptive

statistics for Pandas DataFrame.

Let’s create simple dataframe

Example-8

Output

import pandas as pd

data = {'name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'],

 'age': [42, 52, 36, 24, 73],

 'preTestScore': [4, 24, 31, 2, 3],

 'postTestScore': [25, 94, 57, 62, 70]}

df = pd.DataFrame(data, columns = ['name', 'age', 'preTestScore', 'postTestScore'])

We can use. Describe () function to compute descriptive statistical data of desired column.

Example-9

Output

As shown above we can se there is 5 nos of row from count, mean of preTestScore data is 12

minimum values of score are 2 and maximum score is 31. like this we can get statistical information

about data which can help us to further evaluate the results.

df['preTestScore'].describe() # describing preTestScore column

Other examples of functions used for descriptive analysis are as below.

The sum of all the ages

df['age'].sum()

Mean of preTestScore

df['preTestScore'].mean()

Cumulative sum of preTestScores, moving from the rows

df['preTestScore'].cumsum()

Count the number of non-NA values

df['preTestScore'].count()

Minimum value of preTestScore

df['preTestScore'].min()

Maximum value of preTestScore

df['preTestScore'].max()

Median value of preTestScore

df['preTestScore'].median()

Sample variance of preTestScore values

df['preTestScore'].var()

Sample standard deviation of preTestScore values

df['preTestScore'].std()

Correlation Matrix Of Values

df.corr()

Covariance Matrix Of Values

df.cov()

Skewness of preTestScore values

df['preTestScore'].skew()

Kurtosis of preTestScore values

df['preTestScore'].kurt()

Data Cleaning and Preparation
Data preparation is one of the most important steps in data analysis and modeling.

• A significant amount of time, i.e., close to 80% of the time, is spent in data preparation processes like

loading, cleaning, transforming, and rearranging.

• Pandas, along with many Pythons language features, provides a high-level, flexible, and fast set of tools

for manipulating data in the right form.

The most important data cleaning and preparation methods are as follows

Handling Missing Data

• Missing data normally occurs in many data analysis applications.

• The way of representation of missing data in pandas’ objects is a little imperfect, but it is functional for a lot
of users.

• For numeric data, pandas use the floating-point value NaN (Not a Number) to represent missing
data, which is called sentinel value.

• Pandas uses a convention used in the R programming language by referring to missing data as NA, which
stands for not available.

• During data cleaning, it is very important to do the analysis on the missing data itself to identify
data collection problems or potential biases in the data caused by missing data.

• The two common techniques of handling missing data are as follows:

• Filtering out missing data

• Filling in missing data

Filtering Out Missing Data

• There are different ways to filter out missing data using Pandas. The most obvious way is to do manually

using pandas.isnull and boolean indexing.

• dropna is also helpful in filtering out missing data. When used on a Series, it returns the Series with only
the non-null data and index values.

• With DataFrame objects, we will drop rows or columns that are all NA or only those containing
any NAs. dropna by default drops any row containing a missing value.

• Another way of filtering out DataFrame rows tends to concern time series data. In case we need to keep
only rows containing a certain number of observations. This can be indicated with the thresh argument.

Filling in Missing Data

• Another way of handling missing data is that filling the gaps in any number of ways.

• In most of the cases, the fillna method is used, calling which with a constant replaces missing values with
that value.

• Calling fillna with a dict, different fill value can be used for each column.

• fillna returns a new object, but the existing object in-place can be modified.

• The same interpolation methods available for reindexing can be used with fillna.

Removing Duplicates

• Calling the method duplicated returns a boolean Series, which indicates whether each row is a duplicate
(has been observed in a previous row) or not.

• The drop_duplicates method returns a DataFrame where the duplicated array is False.

• Both the duplicated and drop_duplicates methods consider all the columns, by default; but we can specify
any subset of columns to detect duplicates.

• duplicated and drop_duplicates methods by default keep the first observed value combination. Passing
the argument keep='last' will return the last one.

Examples-10

Drop missing observations

df_no_missing = df.dropna()

Drop rows where all cells in that row is NA

df_cleaned = df.dropna(how='all’)

Create a new column full of missing values

df['location'] = np.nan

Drop column if they only contain missing values

df.dropna(axis=1, how='all’)

Drop rows that contain less than five observations

This is really mostly useful for time series

df.dropna(thresh=5)

Fill in missing data with zeros

df.fillna(0)

inplace=True means that the changes are saved to the df right away

df["preTestScore"].fillna(df["preTestScore"].mean(), inplace=True)

Fill in missing in postTestScore with each sex’s mean value

of postTestScore

df["postTestScore"].fillna(df.groupby("sex")["postTestScore"].transform

("mean"), inplace=True)

Select some rows but ignore the missing data points

Select the rows of df where age is not NaN and sex is not NaN

df[df['age'].notnull() & df['sex'].notnull()]

Example of Deleting Duplicate values

import pandas as pd

Create dataframe with duplicates

raw_data = {'first_name': ['Jason', 'Jason', 'Jason','Tina', 'Jake',

'Amy'],

 'last_name': ['Miller', 'Miller', 'Miller','Ali', 'Milner',

'Cooze'],

 'age': [42, 42, 1111111, 36, 24, 73],

 'preTestScore': [4, 4, 4, 31, 2, 3],

 'postTestScore': [25, 25, 25, 57, 62, 70]}

df = pd.DataFrame(raw_data, columns = ['first_name', 'last_name', 'age',

'preTestScore', 'postTestScore’])

Identify which observations are duplicates

df.duplicated()

df.drop_duplicates()

Drop duplicates in the name column, but take the last obs in the

duplicated set

df.drop_duplicates(['first_name'], keep='last')

Analyzing Outliers

• Trimming: It excludes the outlier values from our analysis. By applying this technique our data becomes

thin when there are more outliers present in the dataset. Its main advantage is its fastest nature.

• Capping: In this technique, we cap our outliers data and make the limit i.e, above a particular value or less

than that value, all the values will be considered as outliers, and the number of outliers in the dataset

gives that capping number.

For Example, if you’re working on the income feature, you might find that people above a certain

income level behave in the same way as those with a lower income. In this case, you can cap the

income value at a level that keeps that intact and accordingly treat the outliers.

• Treat outliers as a missing value: By assuming outliers as the missing observations, treat them accordingly

i.e, same as those of missing values.

• Discretization: In this technique, by making the groups we include the outliers in a particular group and

force them to behave in the same manner as those of other points in that group. This technique is also

known as Binning.

Feature Engineering

• In machine learning, transforming raw data to an optimal set of features is important to increase
the accuracy of the results. This process is known as feature engineering.

• More the number of appropriate features, the greater the ML model can perform. For this,
feature engineering enforces the data to be correctly represented.

• This better representation of the problem to predictive models results in high accuracy of the model.

• Feature engineering is the most changing part in creating a model that yields highly accurate results.

• Since ML libraries take care of implementations, this process consumes more than three-fourth of the
time.

• Deciding these features are specific to the domain and so it requires domain expertise, practice and
many trails & errors.

• Generally, this process is iterative. It requires applying a technique, evaluating a model and checking if
the accuracy has improved.

Techniques in Feature Engineering

Example for Feature Engineering

Language Prediction

Feature engineering is used in language prediction. Consider we’re given some statements in a language and

we need to predict the language.

Group by operations

groupby() function is used to split the data into groups based on some criteria. pandas’ objects can be split

on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names.
Grouping records by column(s) is a common need for data analyses. Such scenarios include counting

employees in each department of a company, calculating the average salary of male and female employees
respectively in each department, and calculating the average salary of employees of different ages. Pandas has
groupby function to be able to handle most of the grouping tasks conveniently. But there are certain tasks that
the function finds it hard to manage. Here let’s examine these “difficult” tasks and try to give alternative solutions.

groupby() is one of the most important Pandas functions. It is used to group and summarize records
according to the split-apply-combine strategy.

Groupby Statistical Analysis
 The aggregation functionality provided by the agg() function allows multiple statistics to be calculated per

group in one calculation.
Instructions for aggregation are provided in the form of a python dictionary or list. The dictionary keys are

used to specify the columns upon which you’d like to perform operations, and the dictionary values to specify the
function to run.

Refer below example for better understanding.

Summary
• Pandas has two types of data structure series and data frames

• A DataFrame is a two-dimensional object that can have columns with potential different types.

• The NumPy API is used extensively in Pandas, SciPy, Matplotlib, scikit-learn, scikit-image and most other

data science and scientific Python packages.

• Pandas can be used to work with different type of files like-Excel, CSV,Tex,tSQL,Web data, Image.

• Python Pandas is used to compute descriptive statistical data like count, unique values, mean, standard

deviation, minimum and maximum value and many more.

• Data frames can be filtered using You can create very powerful and sophisticated expressions by combining

logical operations like- NOT (~), AND (&), OR (|), XOR (^).

• The two common techniques of handling missing data are - Filtering out missing data & filling in missing data.

• In machine learning, transforming raw data to an optimal set of features is important to increase

the accuracy of the results. This process is known as feature engineering.

• groupby() function is used to split the data into groups based on some criteria. pandas’ objects can be split

on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names.

